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Abstract

Based on the framework of Ju and Chen (Ju, JJW., Chen, T.M., 1994. J. Engng. Mater. Tech. ASME 116, 310-318)
and Ju and Tseng (Ju, J.W., Tseng, K.H., 1996. Int. J. Solids Struct. 33, 4267-4291; Ju, J.W., Tseng, K.H., 1997.
J. Engng. ASCE 123, 260-266), we study the effective elastoplastic behavior of two-phase metal matrix composites
(MMCs) containing randomly located yet unidirectionally aligned spheroidal inhomogeneities. Specifically, the particle
phase is assumed to be linearly elastic and the matrix phase is elastoplastic. The ensemble-volume averaging procedure
is employed to micromechanically derive the effective yield function of MMCs based on the probabilistic spatial dis-
tribution of aligned spheroidal particles and the particle-matrix influences. The transversely isotropic effective elasticity
tensor is explicitly derived. Further, the associative plastic flow rule and the isotropic hardening law are postulated
according to the continuum plasticity. As a result, we can characterize the overall elastoplastic stress—strain responses of
aligned spheroid-reinforced MMCs under three-dimensional loading and unloading histories. The overall elastoplastic
continuum tangent tensor of MMC:s is also explicitly presented. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The prediction and estimation of overall mechanical properties of random heterogeneous materials are of
great interest to researchers and engineers in many science and engineering disciplines. The so-called “‘ef-
fective” properties of a heterogeneous composite can be obtained by some volume and ensemble averaging
processes over a “‘representative volume element” (RVE) featuring a “mesoscopic” length scale, which is
much larger than the characteristic length scale of microscopic particles (inhomogeneities or inclusions) but
smaller than the characteristic length scale of a macroscopic specimen. Metal matrix composites (MMCs)
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are one class of multiphase materials, usually consisting of two phases (e.g., with ceramics as the rein-
forcement and metal as the matrix). With the advent of new processing techniques, the mechanical
properties, which can be tailored with MMCs, such as the low density, high strength and high stiffness, have
made MMC:s attractive candidate materials for aerospace, automotive and many structural applications. In
MMC s, reinforcements may be continuous in the form of long fibers or discontinuous in the form of
particulates, short fibers or whiskers. Although continuous fiber-reinforced MMCs offer highly directional
properties such as high specific stiffness along the fiber direction, discontinuously reinforced MMCs have
attracted considerable attentions as they provide a number of advantages. For example, particle-reinforced
MMCs (PRMMCs) are less expensive to produce and they can be shaped by standard metallurgical pro-
cesses such as forging, rolling and extrusion, etc. Further, PRMMG s can exhibit nearly isotropic behavior
(if randomly oriented). We refer to Taya and Arsenault (1989), Ibrahim et al. (1991), Suresh et al. (1993),
Clyne and Withers (1993), and Arsenault et al. (1994) for a general review of PRMMCs.

A topic of practical importance regarding the applications of discontinuously reinforced MMC:s is the
prediction of their effective elastoplastic behavior from microstructural characteristics. These include the
mechanical properties of constituent phases, volume fractions, spatial distributions, and micro-geometries
(shapes, orientations and sizes) of inhomogeneities. For instance, Tandon and Weng (1988) employed the
Mori-Tanaka method Mori and Tanakaa (1973) and the secant moduli method (cf. Berveiller and Zaoui,
1979) to predict the effective elastoplasticity of PRMMCs. Subsequently, Zhao and Weng (1990) considered
the overall elastoplasticity of aligned spheroid reinforced MMCs. However, as pointed out by the authors
themselves, the above approach is not reasonably acceptable under a high hydrostatic loading. Therefore,
an improved method was proposed by Qiu and Weng (1992, 1993, 1995), using the energy criterion for the
effective stress of the ductile matrix to estimate the strain potential and the overall stress—strain relations of
a two-phase composite containing spherical or spheroidal inclusions.

A different strategy involves the so-called mathematical upper and lower bounds, and variational esti-
mates. Along this line, Ponte Castaneda (1991, 1992, 1996) provided the estimates for isotropic particulate
composites and fiber reinforced composites. In addition, Li (1992) and Li and Ponte Castaneda (1994)
proposed the estimates for spheroidal PRMMCs. On the contrary, Suquet (1993) proposed a different
mathematical bounding method, which is less general than the previous methods, but simpler for the cases
considered therein.

Based on Budiansky et al. (1982) and Duva (1984), Lee and Mear (1991, 1992) considered the effects of
inclusion shape on the strength of power-law composites. First, they solved a kernel problem for an isolated
inclusion in an infinite block, and obtained constitutive relations for dilute inclusion concentrations.
Subsequently, they employed a differential self-consistent scheme to extend their formulation to non-dilute
concentrations. By contrast, motivated by the work of Gurson (1977), Zhu and Zbib (1995) employed a
finite unit cell to account for the interaction effects of particles in MMCs with periodic microstructures.
They provided an upper bound solution for the flow strength of MMCs.

In addition, it is popular to use the finite element analysis to investigate the mechanical behavior of
PRMMC:s. For instance, Christman et al. (1989a,b) and Tvergaard (1990) calculated the effective elasto-
plastic behavior of short-fiber reinforced MMCs by using the axisymmetric unit cell (periodic) model.
Similarly, Levy and Papazian (1990) and Hom (1992) utilized a unit cell model together with the three-
dimensional finite element analysis to determine the effective elastoplastic responses of short-fiber rein-
forced MMCs. Moreover, Bao et al. (1991) combined the finite element analysis with a theoretical inves-
tigation.

Emanating from the continuum (not micromechanical) approach, some researchers treat MMCs as
single-phase anisotropic materials with different properties along different directions. Naturally, the be-
havior of the aligned short-fiber or continuous-fiber reinforced MMCs exhibit at least transverse isotropy.
Important works along this line include, for example, the continuum model of Mulhern et al. (1967), the
failure criteria of Hashin (1980), and the bimodal plasticity analysis of Dvorak and Bahei-EI-Din (1987)
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and Dvorak (1988) for fiber reinforced MMCs. Hansen et al. (1991) and Schmidt et al. (1993) also proposed
a modified model of Hill (1948) to calculate the plastic behavior of transversely isotropic composites.
Further, Voyiadjis and Thiagarajan (1995) proposed a new anisotropic pressure-dependent continuum
yield surface model for directional fiber-reinforced MMC:s.

More recently, Ju and Chen (1994a—c) and Ju and Tseng (1996, 1997) developed a new micromechanical
framework to predict the effective elastic and elastoplastic behavior of spherical PRMMCs with random
microstructures, under three-dimensional loading and unloading histories. They considered both the
“noninteracting” (far-field interacting) and interacting formulations involving elastic spherical particles
embedded in an elastoplastic metal matrix. Further extending their work, the present article aims to predict
the overall elastoplastic stress—strain responses of randomly located, aligned spheroid-reinforced MMCs.

The rest of the article is organized as follows. In Section 2, following the very recent work of Ju and Sun
(1999), local micromechanics is recapitulated to render an explicit expression for the “exterior-point Es-
helby’s tensor”, which represents the strain/stress influence of an ellipsoidal inclusion upon a material point
located within the matrix phase. Rigorous mathematical and geometric quantities are used to obtain the
explicit expressions. Assuming a simple J,-type plasticity for the matrix material, the ensemble-average
procedure is utilized in Section 3 to derive the overall “current stress norm’ of aligned spheroid-reinforced
MMCs. Subsequently, the effective yield function is derived in Section 4. Further, the overall associative
plastic flow rule and the isotropic hardening law are postulated. As a result, we arrive at a micromechanics-
based elastoplastic constitutive formulation for aligned spheroid-reinforced MMCs under three-dimensional
loading and unloading conditions. In a companion article (Sun and Ju, 2000), applications to the uniaxial,
hydrostatic and axisymmetric elastoplastic stress—strain behavior will be considered in detail. Comparison
among our model predictions, experimental data, finite element results, and mathematical bounds will also be
presented in a companion article to illustrate the capability and performance of the proposed framework.

2. Local micromechanics of an ellipsoidal inhomogeneity embedded in an elastic medium

Let us start by considering a composite consisting of a linearly elastic isotropic matrix (phase 0) and
unidirectionally aligned linearly elastic isotropic ellipsoidal inclusions (phase 1) with distinct material
properties (Fig. 1(a)). It is assumed that the two phases are perfectly bonded at interfaces.

Upon loading, the total stress a(x) at any local point x in the matrix is the sum of the far-field stress ¢°
and the perturbed stress ¢’(x) due to the presence of the inhomogeneities (Fig. 2). Specifically, we have
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Fig. 1. (a) A composite containing randomly located, aligned ellipsoidal particles, and (b) Sketch of an ellipsoid.
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RVE

inhomogeneities

IEshe]by‘s equivalence principle,

homogeneous stress ¢° perturbed stress ¢'(x)

Fig. 2. Superposition of a homogeneous medium with the far-field stress 6°, and another homogeneous medium with the perturbed
stress o’ (X).

6’ = C, : €°, and the stress perturbation due to one single inhomogeneity Q,(x(")) centered at x!) is derived
as (cf. Ju and Chen, 1994a,b,c)
o'/(x\xm) =[Cy - G(x — x(1>)] e, (1)

where Cj is the linear elasticity tensor of the matrix, the symbol ¢ denotes the tensor contraction, and €’ is
the uniform elastic strain field induced by the far-field loading. In addition, €*° denotes the noninteracting
solution of the (elastic) eigenstrain for the isolated inclusion problem (cf. Eshelby, 1957).

The so-called “exterior-point Eshelby’s tensor” G(x — x'V) is defined as (cf. Ju and Sun, 1999)

G(x —x) = / G(x — x')dx’' (2)
(x()

for x ¢ Q,(xV). In indicial notation, the components of the fourth-rank Green’s function tensor G read (cf.
Ju and Chen, 1994a)

, 1 .
G,-jk,(x — X ) = 3 [(1 — 2V0)(55k5ﬂ -+ 51'10]1{ — 5ij5k1) —+ 3V0(5,~kl’ljl’ll + 5,-lnjnk
8n(1 — wo)|lx — X/||
+ dpning + Ominy) + 30,mn; + 3(1 — 2v)dmin; — 15nl~njnkn1], (3)

where vy is Poisson’s ratio of the matrix material, and the outward unit vector is defined as
n = (x — x')/||x — X/||. The symbol || - || signifies the norm of a vector. We denote by V" the statistical RVE,
which is infinitely large compared to inclusions and without any prescribed displacement boundary con-
ditions along the infinite exterior boundaries. It is observed that the above expression of Green’s function is
fundamentally different from the “modified Green’s function” considered by Mazilu (1972) and Kroner
(1990) in which the prescribed displacements or Green’s function values on the (finite or infinite) exterior
boundaries are homogeneous (zero).
In Eq. (2), X’ defines the ellipsoidal inclusion domain centered at x(!) as follows:
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(1\2 / (D)\2 / (152

X, —x X — X Xy — X

( 1 - 1 ) + ( 2 - 2 ) + ( 3 - 3 ) < 1 (4)
a a a3

in which g; (i = 1,2, 3) is one of the three semi-axes of the ellipsoid and the center is x(!) = (xgl),xgl),xgl))

(Fig. 1(b)).
Following Mura (1987), we can construct a new imaginary ellipsoid in terms of Eq. (4) for any point x
within the matrix phase. That is, we have (Fig. 3)

1)\2 1)\2 1)\2
(o =) @) a-x)

al+ A a + A a%Jr/{ ’ (3)

where 4 is taken as positive (4 > 0) and can be solved from Eq. (5). Consequently, 4 is only a function of x
(in the matrix) and xV) (in the real inclusion domain). Moreover, Ju and Sun (1999) introduced the outward

unit normal vector fi at any matrix point X on the new imaginary ellipsoid, which can be expressed as (cf.
Fig. 3)

P B B 6
(af +2)\/O(2) X
in which
O(4) = 0:(2)6:(%), (7)
X;i — XEI)
0,(2) = e (8)

In addition, we follow Mura’s (1987) tensorial indicial notation, i.e., repeated lower-case indices are

summed up from 1 to 3, whereas upper-case indices take on the same numbers as the corresponding lower-
case ones but are not summed up.

Imaginary|
Ellipsoid

Fig. 3. Schematic representation of the imaginary ellipsoid and its outward unit normal vector n.
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_ With the help of the above definitions and after lengthy derivations, the exterior-point Eshelby’s tensor
G in Eq. (2) can be explicitly expressed in terms of the outward unit normal vector h and the second-rank
identity tensor 1 (the Kronecker delta tensor) as (cf. Ju and Sun, 1999)

1

Gija(x —xV) = A=) S (1300 + S (2)(0udj1 + 0udy) + S (A)dyininy + S (7)Saiii;
— Vo
+ 87 () (Suiyiy + Suitig) + S\ (A) (S iy + &gy ) + s}],@L(z)ﬁii,ﬁkﬁl] , (9)
where all the components are given by
1) ~ a . a
S[K (/“) = - ZVOJI(/L) + 2 2 ‘]I(A) + 2 zJKU')? (10)
ar —ak x — a1
)/, \ az , a’
SE () = = (L= )Ui(D) + L] + =i () + =L 0, (), (1
1 J J 1
(1) = 208 (A1 = P2, (12)
S¢(2) = 20" (A)[1 = 2vo — pi (2)], (13)
8;7(2) = 20 (D)o — P} (2)); (14)
S37(2) = 20* (Ao — p3(A), (15)
s 1 ) 4P2 A @m A @m A
S0.0) =200 200 + 20 + ) + B + ()~ PHEICAEE 5| g
Here, p,(4), p(1), and J;(4) are defined as
ap
)=t 17
p;(4) r (17)
p(2) = [p1 (D) pa(D)ps ()7, (18)
3
_[PX)
Ji(A) = /012 +)vd}u. (19)

It is noticed that the integral J;(1) can be expressed by the standard elliptic integrals. Further, if the in-
clusion shape is spheroidal (a; = a3 = a # a1), then we can integrate the J;(1) explicitly and therefore obtain
the components of the exterior-point Eshelby’s tensor. See Appendix A for details. It is noted that Eq. (9) is
equivalent to Eq. (11.41) of Mura (1987). However, our treatment is geometrically meaningful (in terms of
the new n) and features a common indicial structure. Furthermore, our treatment is finished, explicit,
compact, systematic, and easy to use in comparison with that of Mura (1987).

In addition, the eigenstrain €*° in Eq. (1) is given by (cf. Ju and Chen, 1994a)

e'=—(A+S)": ¢, (20)
where the fourth-rank elastic “phase-mismatch” tensor A is defined as
A=[C —C ™" G (21)

in which C; is the linear elasticity tensor of the particle phase. Further, S is the (interior point) Eshelby’s
tensor for an ellipsoidal inclusion, which is defined as (Eshelby, 1957):
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S(x —xV) = / G(x — x')dx (22)
Q(x()

for x € 2,(xV).

By comparing Eq. (22) with Eq. (2), we realize that the only difference between the exterior-point
Eshelby’s tensor G(x — x(")) and the (interior point) Eshelby’s tensor S(x — x(!)) is that the material point x
is inside the matrix domain for G, whereas X is in the inclusion domain for S. The exterior-point Eshelby’s
tensor G will not recover the (interior point) Eshelby’s tensor S even as the point x in the matrix moves to
the boundary (interface) between the matrix and the inclusion. The detailed discussions are given in Ju and
Sun (1999).

Eshelby (1957) proved that the (interior point) Eshelby’s tensor S does not depend on the location of the
point x in an inclusion. Therefore, S is a constant tensor. Explicitly, the (interior point) Eshelby’s tensor S
for an ellipsoidal inclusion takes the form:

1
4(1 — V())

where S (0) and S(0) are special cases of S}y (1) and S\ (1) in Egs. (10) and (11) by setting 4 = 0.
Moreover, it is clear that the (interior point) Eshelby’s tensor depends only on Poisson’s ratio of the matrix
and the three semi-axes of an ellipsoidal inclusion.

Finally, we refer to Appendix A for the explicit expression of the (interior point) Eshelby’s tensor
corresponding to a spheroidal inclusion. Therefore, upon any external loading, the stress pertubation due
to one inhomogeneity can be derived by substituting Egs. (9) and (20) into Eq. (1).

Sij = (i’ (00364 + S (0) (S + Gudj)), (23)

3. Ensemble-average procedure for PRMMCs

To obtain “effective” constitutive relations of randomly distributed particle-reinforced composites, one
typically performs the ensemble-volume averaging procedure (homogenization) within a mesoscopic RVE.
Let us consider a two-phase composite containing randomly located yet aligned elastic spheroids embedded
in an elastoplastic matrix material. The entire assembly is subjected to specified far-field loadings. Further,
all particles are assumed to be non-intersecting (impenetrable) and small deformation is assumed. Hence,
the microstructure is assumed to be statistically homogeneous and isotropic with a virtually constant
particle volume fraction during the deformation process. For simplicity, the commonly used von Mises J;-
yield criterion with an isotropic hardening law is assumed for the matrix material as an illustration. Ex-
tension of the present framework to more general yield criterion and general hardening law can be derived
with additional effort.

Accordingly, at any matrix material point X, the stress ¢(x) must satisfy the following yield function:

F(e,&)=+6:1:06—K(2)<0 (24)

in which e? and K (eP), respectively, are the equivalent plastic strain and the isotropic hardening function of
the matrix-only material. Extension can be made to accommodate the kinematic hardening law. Moreover,
I; denotes the deviatoric part of the fourth-rank identity tensor 1, i.e.,

L=1-1e1 (25)

Following Ju and Chen (1994c) and Ju and Tseng (1996), we denote by H(x|¥) the square of the
“current stress norm” at a local point x, which contributes to the plastic yielding criterion of PRMMC:s for
a given particle configuration (assembly) 4. As there is no plastic deformation in the elastic particles,
H(x|%) can be written as
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6(x|9) : 14 :6(x|9) if x in the matrix,

H(x|9) = {O otherwise. (26)

We now define (H), (x) as the ensemble average of H(x|%) over all possible realizations for a matrix point
x. Further, we define P(%) as the probability density function for finding a particle configuration % in the
composite. Accordingly, (H), (x) can be expressed as

(H),(x) =H"+ L {H(x|9) - H"} P(%)d¥, (27)

where H? is the square of the far-field stress norm in the matrix,
H =6":14:6" (28)

The expression for (H), (x) can be approximately obtained by neglecting the interaction among
neighboring particles. This process is illustrated in Fig. 4. That is, a matrix point x simply collects the
perturbation from all randomly located, non-interacting particles

(H),(x) = H® + /W( ) {H(x[x") - H'}P(xV)dx"V 4 -+, (29)

where Z(x) is the “exclusion zone” of x for the center location x!") of a particle in the probability space,

which is identical to the shape and size of a spheroidal particle. The probabilistic exclusion zone states that
x1) cannot be located within the Z(x) domain because x must be located within the matrix phase. In
addition, P(x") denotes the probability density function for finding a particle centered at x(V). Here, P(x(!)
is assumed to be statistically homogeneous, isotropic and uniform. Therefore, we write P(xV) = N/V
where N is the total number of particles dispersed in an RVE V. As the exclusion zone is very small (one
particle domain) compared with the infinitely large probability space, it is reasonable to approximate the
tiny spheroidal exclusion zone by an equal-volume spherical exclusion zone. Namely, we define an equal-

— Collection

Equal-Volume
Spherical
Exclusion Zone

Spheroidal
Exclusion Zone

Fig. 4. A local matrix point x collecting perturbations from the surrounding particles, with a tiny probabilistic exclusion zone.
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volume spherical probabilistic exclusion zone with the radius a* = (alag)l/ ‘o Jo*3, where o = a;/a, is
the aspect ratio of a spheroid. Accordingly, Eq. (29) can be recast into an approximate form

N o0
<H>m%HO+V/ dr/ {H(r)—H"}d4 + -+, (30)
a* A(r)

where A(r) is a surface of radius » = ||[x —x!|| in the probability space. Despite the approximation
involving a*, the integrand H(r) preserves the spheroidal fi and S, which are functions of the aspect
ratio o.

Upon integrating the above surface integral, we discover the following two identities involving sphe-
roidal n:

2
A(r)
e 42
i d4 = 15 [A1K5ij5k/ + Ay (6udj + 51‘15/1()]7 (32)
A(r)

3[1 — o*f (o2
4, = M) (33)
4y =4 =13 - 4)), (34)
b ¢ ¢
[A]‘]]: c d d (35)
c d d
with
D G =T At
f(a)_{i‘%—]fa 1, (36)
_ 5 4 A4 2
b= 20— o) 2+ o = 30" f(o7)], (37)
c= ERECA (=3 + (1 +20*) £ ()] (38)
4(1 — o)’ ’
d =415 - 3b — 4c). (39)

In addition, Sun (1998) derived an explicit novel inverse formula for the fourth-rank “generalized isotro-
pic” tensor, which is given in Appendix B.
With the help of the above tools and by dropping some higher-order terms, we can evaluate the en-

semble-averaged square of the current stress norm at any matrix point as
(H), ~6":T:d°, (40)

m

where the components of the fourth-rank tensor T take the form:

Ty = Ty 30 + Ti7 (9401 + 840 (41)
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with
1 2¢ 5
TV = -4 1575(1 — 2vo) Ty Ik 4+ 21(25v9 — 23)(1 — 2v
3T 472501 — o) BuB (15750 = 20Tl +2125m = 23)(1 ~2v)
X(F]]AK + FKKA[) + 21(25V0 — 2)(1 — 2V0)(F]] + FKK) + 3(35\)8 - 70V0 + 36)A]K
+ 7(50v — 59vy + 8)(A; + Ax) — 2(175vF — 343w, + 103) |, (42)
1 ¢ A+ 4,
T =+ [ 72 — 140vy + 70v3) Ay — (75 — 266vy + 175v2
i) 2 1575(1 _ VO)ZBIJBIJ ( 0 0) 12 ( 0 o) P
+ 164 — 476v, + 350v§] . (43)

Here, ¢ is the volume fraction of particles, which is defined as ¢ = (4naj/30?)(N/V). Further, we have
By = 2[2, + 57 (0)], (44)

. 22; + 285 (0) + Bx][Z, + 811 (0)] — 2[Z, + 85, (0)][Z; + 513 (0)] (45)
[22; + 285 (0) + Bx)[Z: + 81} (0) + Bui] — 2[Z; + 515 (0)][Z; + 85, (0)]

[Z1 + 511(0) + BullZi + 51 (0)] — [Z1 + 515(0)][Z1 + S} (0)]

I'p=1Ip3= ; (46)
22 + 283 (0) + Bx)[Z1 + S1} (0) + Bui] — 2[Z1 + 815 (0)][Z1 + 857 (0)]
where
)
Z) = , 47
1 (1 = 10)[2(1y — o) + 3(A1 — Ao)] “7)
Ho
Zy =M 48
? 2(#1 - #0) (48)

and /g and p; are the Lame constants of the f-phase (8 =0, 1).

It is interesting to observe that if one allows the particle volume fraction ¢ to go to zero in Egs. (42) and
(43), the tensor T then reduces to the fourth-rank deviatoric identity tensor I4. Consequently, the ensemble-
averaged square of the stress norm defined in Eq. (40) reduces to the second deviatoric stress invariant .J,,
which is employed to define the classical von Mises yield criterion. Within the present formulation, the
effect of the spheroidal aspect ratio « upon the ensemble-averaged square of the current stress norm (H),, is
preserved through the effective radius a*, the outer normal n, and the spheroidal (interior point) Eshelby’s
tensor S.

In Eq. (40), (H),, is described in terms of the far-field stress 6°. Alternatively, the ensemble-averaged
square of the current stress norm can be expressed in terms of the macroscopic (ensemble-volume averaged)
stress . The relationship between the far-field stress 6° and the macroscopic stress  is given by (cf. Ju and
Chen, 1994a.c)

¢ =P:q, (49)
where the fourth-rank tensor P reads
P={Co-I+¢(I—S)-(A+S)"]-¢;'} " (50)

With the help of the inverse formula for the “generalized isotropic” fourth-rank tensor provided in Ap-
pendix B, P can be expressed as
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P = 1312)512/51(1 +Pf >(5z'k5jl + 6i0j) (51)
with
e
) _ 1 52
IK 21_,5?) ’ ( )
A (53)
ary)
where
(1) 2)y (1) (1) (1)
3 (5 + I\ — Ty T
;l) — 2 2)'n 20712 (54)

1 2 1 2 1 1)’

3 _ 0 (riy +2rry - riyry
My =Ty =-—m BNEOIC) DIEOR (55)
Z(Fll+2F11)(F22+F22)_2F12F21

I (1- ZS(2>)¢

(2) 7

S St VA

J 2 2B[J 9 (56)

1 1 2
F(l) — d) FmKSI(m> _ SI(K) _ FIK(I - 2SI(I)) ) (57)
) Bunw Bk By

Combination of Egs. (49) and (40) then leads to the alternative expression for the ensemble-averaged
square of the current stress norm as

(H), =5:T:a, (58)
where the fourth-rank tensor T is defined as

T=P"-T-P. (59)
After carrying out the lengthy algebra, the components of T are explicitly given by

Ty = Ty 0,00 + Tiy (90 + 3udi), (60)
where

(1 2) (2) p1 2) 1(2) (1 2) (1) p(2 2) (1) (1 2) (1) (1 1)) pl
Ty = 4P Ty P’ + 4P Tl Py + 4Py Ty Pl + 2P T3, PLid + 2P TP, + 2P R To Py

ml

+ PRTO)PY, (61)
F(2 2 2 2
TI.(]) :4PI(J)TI.(])PI(J)' (62)

It is observed again that the ensemble-averaged square of the current stress norm given in Eq. (58) reduces
to the classical J,-invariant upon substituting ¢ = 0 into Egs. (61) and (62). Therefore, the tensor T reduces
to the fourth-rank deviatoric identity tensor Iy for ¢ = 0.

As shown by Ju and Chen (1994a,c), the tensor P in Eq. (50) accounts for the far-field interaction effect
of particles. That is, although the near-field direct particle interactions are not considered, the interactions
between particles and the far-field boundary are included in the tensor P. In fact, Ju and Chen (1994a)
showed that the elastic far-field interaction formulation (the so-called non-interacting formulation therein)
renders identical elastic moduli to those obtained by the variational bounds of Willis (1977) and the
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Mori-Tanaka formulation of Weng (1990) for elastic composites with aligned ellipsoidal inclusions.
Therefore, (H),, in Eq. (58) contains the far-field interaction effect.

In Section 4, we will propose the effective yield function and derive the overall elastoplastic constitutive
behavior of aligned spheroid-reinforced MMCs in accordance with the formulas derived in this section.

4. The effective elastoplastic constitutive behavior of PRMMCs

According to the continuum plasticity, the total macroscopic strain € is assumed to consist of two parts:
E=¢€+¢€, (63)

where €° denotes the macroscopic elastic strain and €P represents the macroscopic plastic strain of
PRMMC:s. The relationship between the macroscopic stress ¢ and the macroscopic elastic strain reads

6=C":¢&, (64)

where the effective elastic stiffness tensor C* (with the far-field interaction effect) of the aligned ellipsoid-
reinforced two-phase MMC:s takes the form (cf. Ju and Chen, 1994a):

C'=Co+¢Co-[A+(1—-9¢)S]". (65)

In the case of aligned (in the x,-direction) spheroid-reinforced MMCs, by using the inversion formula in
Appendix B, C* can be explicitly expressed as

Ciy = Ci 50 + Cf (3051 + 84030), (66)
where

) = 79— 2y 4 2005 oqsz (67)

‘/jll lp[(l( lpmm
e =m(1+7-) (65)
u

with

Yy =2[Z+ (1 - (t))Slj)} (69)

&1z + (1- $)SH(0)] — 2&,[2) + (1 — )8}, (0)]
Y, = , 70
" G& 284 70
&2+ (1 - 9)SK (0] — &[0 + (1 - ¢)51(0)
W=, = , 71
B 66 -264 7

G=Zi+ ( )Sli (0) + '70117 (72)

& =22+ 2(1 - $)85 (0) + Yo, (73)

& =21+ < $)S1(0), (74)

& =2+ (1 - $)S3(0). (75)
It is easy to show that C12 = C13,C21 —C31 ,sz = C23 —C32 —C33,C12 —C21 —C13 —C31
c§§> = c§§> = c§§> = . In addition, in spite of the lack of major symmetry for the (interior point) Es-

helby’s tensor of sphermdal inclusion, it can be proved that C12 = C§11>
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Therefore, as expected, the overall elasticity tensor C* in Eq. (66) for an aligned spheroid-reinforced
composite exhibits transverse isotropy. Alternatively, by means of the engineering matrix form, the effective
elastic constitutive relation can be rephrased as

{o:} = [Ci{& ) (76)
where

{o:} = {511,522,53375'23,531,512}T, (77)

{gj} = {317327523a2§3,2€§1a2€?2}T, (78)

and the transversely isotropic stiffness matrix [C};] becomes

el +2c cly cly 0 0 0
cly cy +2¢8) cll 0 0 0
cly cy) cy+208 0 0 0
[Cﬂ — 12 22 22 22 @ (79)
J 0 0 0 cd 0o 0
0 0 0 o c? o
L0 0 0 0 0 C?.

Here, the axis of axisymmetry is parallel to the x;-axis. Apparently, the overall elastic response can be
described by the five elastic constants: [Cﬂ) + ZCE?], Cg), Célz), Cé?, and Ci?. The requirement
Ciy = (G5, — C35)/2 can be easily verified for the present problem.

Upon loading, the two-phase PRMMCs may yield and become plastic. The ensemble- and volume-
averaged ‘“‘current stress norm” for a particulate composite can be micromechanically derived as

VHY=(1-¢)Ve:T:s. (80)

It is recalled that ¢ denotes the volume fraction of particles. As a result, the macroscopic yield function for
an aligned spheroid-reinforced MMC can be characterized by

F=(1-¢)Ve:T:6—KE)<0 (81)

where the simple isotropic hardening function K () is proposed as
K@) = \@{ay +h(e) . (82)

Here, g, denotes the initial yield stress, 4 and ¢ signify the linear and exponential isotropic hardening
parameters, respectively, and eP defines the effective equivalent plastic strain. It is emphasized that the
overall yield function is pressure dependent and not of the von Mises type any more.

Moreover, for simplicity, the overall ensemble volume averaged flow rule is assumed to be associative.
Extension to non-associative flow rule can be constructed in a similar manner. Accordingly, the plastic
strain rate for PRMMCs takes the form:

. -OF . T:o
S ey | RS (83)
0a c:T:o
where /1 is the plastic consistency parameter. Substituting Eq. (60) into the above formula, the overall
plastic strain rate can be rephrased as
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(1) = —(2) =
(T4 50y + 2T, 5

VTG ] + 2T G

& =0-¢)

Further, the effective equivalent plastic strain rate for PRMMC:s is defined as

Zep T':é = \/%(1 — )4, (85)
J together with the yield function F must obey the Kuhn-Tucker loading and unloading conditions. From
the plastic consistency condition, 4 can be calculated as
oF . C* . ¢
fm w € i€ . (86)
o [Zac Ty ie] - [\l -9 E]

Accordingly, the relationship between the overall strain rate tensor and the overall stress rate tensor is
recast as

6=C% ¢ (87)
where the elastoplastic continuum tangent stiffness tensor C*P takes the form
e c if 1 =0 (elastic)
CP = : ’ 88
{ C'-I-1U) if 2> 0 (plastic). (88)

Here, the fourth-rank tensor U satisfies € = U : € and reads
(T:5)®(C*-T:5)

G: [T-C*-TJFZ";((ffi;]T} 5

U=

It is noted that U is non-symmetric but C*? is symmetric.

5. Conclusion

Emanating from the “‘eigenstrain concept’ of micromechanics and the macroscopic homogenization, the
ensemble volume averaged elastoplastic constitutive equations are derived for two-phase metal matrix
composites containing randomly dispersed, unidirectionally aligned elastic spheroidal particles. The ““far-
field interacting” stress perturbation formulation is presented based on the probabilistic spatial distribu-
tion, the aspect ratio, and the volume fraction of spheroidal particles, as well as the mechanical properties
of constituent phases. The interior-point and exterior-point Eshelby’s tensors for spheroidal inclusions are
employed to arrive at the proposed derivations. The elastoplastic behavior of PRMMC:s is characterized by
the micromechanically derived effective yield function together with the illustrative overall associative plastic
flow rule and the isotropic hardening law under three-dimensional loading and unloading histories.

In the present study, we have micromechanically derived the overall yield function, which is quadratic,
but not of the von Mises J,-type any more. However, in general, this form may not be universal for all
MMCs. For example, Hashin (1980) and Dvorak et al. (1988), based on phenomenological continuum
plasticity, suggested that the overall yield function of anisotropic fibrous composites be constructed from
piecewise smooth sections and not from a single smooth surface. In addition, in the case of laminated
composites, deBotton and Ponte Castaneda (1992) derived the functional form of the effective yield
function, which is different from that of the constituent phases. We would need to consider tensile particle
fracture mode, tensile interfacial particle/matrix debonding mode, compressive particle mode, tensile matrix
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failure mode, and compressive matrix failure mode, for example, in order to render a sophisticated multi-
surface piecewise smooth damage-plasticity model. Further, more general isotropic/kinematic hardening
laws and alternative non-associative flow rule can be considered within the proposed framework based on
reliable experimental data and evidence (if available); see, e.g., Dvorak et al. (1988) for kinematic hardening
law and non-associative flow rule for fibrous boron-aluminum composite. These issues can be further in-
vestigated within the proposed context in the future, but with considerably more effort. It is noted, however,
that the present paper does not purport to include all phenomenological continuum plasticity aspects or
features. Instead, we apply the micromechanical and ensemble-volume average methodology to the simple
J>r-type plastic yield function with the power-law isotropic hardening rule and the associative flow rule as an
illustration of the proposed concept and framework. In addition, we have not considered the effect of
interfacial particle/matrix debonding upon the overall elastoplastic behavior.

In a related paper (Sun and Ju, 2000), we will present applications of the proposed formulation to
uniaxial stress—strain behavior of spheroid-reinforced MMCs, the behavior of PRMMCs under the
purely hydrostatic tension, the axisymmetric stress—strain behavior, and the initial yield surfaces for
MMCs and porous ductile materials. In addition, the extension to elasto-viscoplastic behavior of
PRMMC:s will also be addressed in Sun and Ju (2000). Nevertheless, care should be exercised in terms of
the range of the aspect ratio o and the particle volume fraction ¢. We recall that the effect of the aspect
ratio of spheroidal particles on the overall elastoplastic behavior is preserved through «*, n and S.
Moreover, the near-field direct particle interactions are not included, although the far-field interactions
are accounted for. Therefore, the current model should avoid extreme values for the aspect ratio, and
avoid high particle volume fractions.
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Appendix A. Components of the exterior- and interior-point Eshelby’s tensors for a spheroidal inclusion

For a spheroidal inclusion aligned with the x;-axis, the explicit formulas for the first two components
S(1) and S (1) of the exterior-point Eshelby’s tensor can be expressed as

SV = [ =4 52 o)~ s+ [ |, (A1)
SV =100 = |~ v+ 2 e+ [0 - st (A2)
00 =530 = [ - 200 -2 et - i, (A3)
W7y — s — g0y — o7y — 4o’ — 1 o pi(4)

S = S0 = S50 =500 = | =20+ g5 e+ 5 ), (A

ST = [ =4+ B et - gt - [ - H2E st (A5)
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S0 =S30) =580 =530 = [ -v-EE5 e - [+ 2o )
S0 = S50 = $51) = 820 = [2v0— o et + 5 20 (A7)

where o = a;/a and

- + i In [(az —D"p,(0) + W@} for a > 1,
A8
| (A8)

(
o? f’:(/ o —1
2—1 p1(%) "’—(l,az)s/z tan for o < 1.

g(4) =

(=) 70 (3)
Here, 4 can be explicitly solved as

P —al—di+ \/(,,2 +& - @) -4 —ad)(x —x\")

A= 7 , (A.9)
where
= (= x) (o — x). (A.10)

All the other components of the exterior-point Eshelby’s tensor can be obtained directly from Egs. (12)-(16)
in Section 2.

In particular, when the inclusion shape becomes spherical (« = 1), the exterior-point Eshelby’s tensor
simplifies to

03

30(1 — V())
+ 15(1 — p2>5,-jflkfl[ + 15(1 — 2V0 — pz)ék[fliflj

Gijkl(x — Xl) = [(3[}2 + IOVO — 5)5ij5kl + (3p2 — IOV() + 5)(5ik5jl + 5i15jk)

+ IS(VQ — pz)(é,knjnl + 5,1njnk + 5]ki’l n; + 5jli’l I’lk) + 15(7[) — S)fl fl fl A] (All)

where p = a/r and « is the radius of the sphere. The above formula is the same as the one given in Ju and
Chen (1994c¢) or Ju and Tseng (1996).

On the contrary, the components of (interior point) Eshelby’s tensor of a spheroidal inclusion can be
explicitly described as

2 4
(1) _ L
Sll (0)_ |:4V0+OC2_1:|g(0)+4‘)0+3(a2_1)7 (A12)
(1) 1) 202 +1 20
812 (0) = 815 (0) = |4vo — 21 g(0) +4vy — 21 (A.13)
s0(0) = 50(0) = [ — 20 - F 2 g0y - 2% Al4
51 (0) = 85,(0) = R v g()*m, (A.14)
4o — 1 o?
(1) (1) (1) (1) _
S22 (0) S23 (0) S32 (0) S33 (0) |:_ 2\)() + 4(0(2 1) g(O) + 2(0(2 _ 1) ’ (AlS)
4oc -2 124> — 8
2
Si7(0) = [ 4y, t a1 ]g(O) 4vo + 3E=1) (A.16)
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@0y — €70y — (0 — @0} — o242 2

813(0) = 85(0) = 851°(0) = 85°(0) = | —vo — 2 —1 g(0) —2vy — 2_1 (A.17)
40 — 7 o2

(2) _ @ _ o _¢® _

SE0) = 55(0) = 550) =500 = |20~ 3555 20) + 358 (A18)
where g(0) is given by
W[cosh’1 o —a(o2 =13 fora>1,
8(0) =g(4) o= m[a(l — o) —cos'a]  fora< 1. (A.19)
For the special case of a spherical inclusion, the (interior point) Eshelby’s tensor reduces to
1

Sijkl = m [(SVO — 1)51'1'5]([ —+ (4 — Sv())(éikéjl —+ 5,[511()] (A20)

Appendix B. An inverse formula for the “generalized isotropic” fourth-rank tensor

Consider the fourth-rank isotropic tensor Q of the following type:
Okt = m0;;05 + w(0ydj1 + 0:d5), (B.1)

where m and w are constants. According to the well-known Sherman—-Morrison formula (see, e.g., Dahl-
quist and Bjorck, 1974), the inverse formula of Q can be written as

1
010 +—— (001 + 010 ). (B.2)

O m
Q 4w

ikl = 2w(3m + 2w)

Within the proposed framework of micromechanics and homogenization of aligned spheroid-reinforced
MMCs, we need to develop the following new ““generalized Sherman—Morrison™ inversion formula to
obtain the inverse tensor of a “generalized isotropic” fourth-rank tensor. That is, we consider a “gener-
alized isotropic” tensor Q of the form:

Okt = (m + M )60 + (W + Wy ) (0401 + 0:10 ), (B.3)

where m and w are constants, whereas M and W are the second-rank tensors. Moreover, W should be
symmetric. After some derivations, it can be shown that the inverse of Q in Eq. (B.3) takes the form:

Y; 1
—1 IK
o K s Syt (840, + 340 y), B.4
Oiju vt ) "’+4(w+ Wu)( 101 4 0i1) (B.4)
where

Y, m+2W+M11+2VV11 m+M21 m+M31 - m+M11

Yll m+M12 m+2w+M22+2W22 m+M32 m+M12

ij m+M1’; m+M23 m—|—2w—|—M33+2W33 m—l—M13

1

(B.5)

and [ = 1-3.

The above tensor inversion formula can be easily verified by checking that the product Q' - Q equals
the fourth-rank identity tensor I. Specifically, the product Q' - Q leads to
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00k

3
-1

O = |m+ My — 2(w + Wig)Y, E (m+ M) ViR | =———
QUKYQ kl 1K ( KK IK — £ RK IR 2(W—|—VV”)

1
+ 3 (001 + 0i0 ). (B.6)

The coeflicient of ,,0;; term indeed goes to zero.
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